Big Data: как применять и анализировать большие данные?
Одно из самых популярных направлений в IT - применение больших данных. Big Data - это масштабные, чаще всего неупорядоченные массивы информации, и технологии работы с ними. Такая информация может храниться в базах данных, в сетях социальных медиа, в системах GPS, датчиках и т.д.
В использовании Big Data есть преимущества для бизнеса, поскольку это открывает новые возможности и помогает компаниям развиваться. Онлайн-магазины, например, используют анализ больших данных для создания персонифицированных сервисов и продуктов, ориентированных на поведение клиентов.
Технологии анализа больших данных, такие как системы машинного обучения, помогают исследователям и аналитикам находить скрытые закономерности в массивах информации. К примеру, в области медицины это может привести к развитию новых лекарств и методов лечения.
Использование больших данных - это не просто модный тренд, это реальный инструмент, который помогает организациям и индивидуальным предпринимателям анализировать рынки, предлагать персонализированный контент и разрабатывать более эффективные продукты и сервисы для потенциальных клиентов.
Приблизительно с 2010 года стало понятно, что аналитика большого объема данных имеет очень широкое применение в разных отраслях. Развитие информационных технологий и вычислительных мощностей позволило обработку колоссальных объемов данных. Огромные массивы информации поступают из самых разных источников: социальные сети, интернет-магазины, форумы, мобильные устройства, измерительные приборы, метеостанции, аудио- и видеорегистраторы и другие. Эти данные растут экспоненциально, а традиционные методы и инструменты уже не могут справиться с их обработкой.
Понятие Big Data возникло в 2008 году, когда был выпущен специальный номер журнала Nature, посвященный влиянию огромных массивов информации в развитии науки. Для обработки всех этих данных нужны специальные алгоритмы и программные средства, также входящие в понятие Big Data.
Анализ методов хранения данных
Чтобы получить пользу от больших данных, их необходимо эффективно управлять, т.к. они могут накапливаться с масштабируемой скоростью. Big Data охватывает огромный, постоянно обновляемый массив разнородной информации, для работы с которым используется несколько этапов. Вначале производится сбор данных из различных источников информации, затем выполняются процедуры хранения, обработки и защиты их от потерь. Особенно актуальны в этом контексте облачные решения, которые обладают несомненными преимуществами по сравнению с объемной локальной IT-инфраструктурой.
При работе с большими объемами информации, созданными различными источниками, в собственной IT-инфраструктуре может возникнуть ряд проблем, которые затруднят ее масштабирование. Нагрузки на физический сервер в пиковые моменты могут быть не предсказуемы, что может привести к выходу из строя сервера. Кроме того, нарастание собственной IT-инфраструктуры может повлечь за собой очень серьезные расходы на ее создание, поддержку и защиту. Облачные технологии позволяют отказаться от закупки дорогостоящего оборудования и вместе с тем обеспечить быстрое масштабирование вычислительных ресурсов, что способствует надежности, отказоустойчивости и гибкой настройке облачной хранящейся информации. Многие компании сегодня переносят инфраструктуру в облако, чтобы нести меньшие финансовые и физические риски при работе с большими объемами данных.
Ключевой этап работы с большими данными - анализ. Это именно тот этап, благодаря которому Big Data начинает приносить реальную пользу в бизнесе. Он позволяет отфильтровать не нужную информацию и выделить все самое ценное.
Существует множество методов анализа больших данных, описать их все в рамках одной статьи невозможно, поэтому мы рассмотрим основные из них.
Переработка информации перед анализом
Процесс приведения неоднородных данных к унифицированному виду, заполнения пропущенных значений и удаления избыточной информации. Этап переработки информации перед анализом Big Data, который необходим для правильной подготовки данных к дальнейшему исследованию.
Data Mining, что в переводе означает «добыча данных», в сущности так и является: при помощи данного метода из набора информации извлекаются ценные закономерности. В области Data Mining происходит решение разных видов задач, таких как классификация, кластеризация (группировка объектов в зависимости от их сходства), анализ отклонений и другие.
Нейронные сети
Алгоритмы машинного обучения во многом похожи на работу человеческого мозга. Они осуществляют анализ входных данных и выдают результат в соответствии с определенным алгоритмом. Нейросети, используемые в машинном обучении, могут быть очень умными. Например, они могут распознавать лица на фотографиях или определять недобросовестные транзакции по заданным признакам.
Анализ прогнозов
Прогнозирование различных событий может быть выполнено путём применения данного метода. Этот метод широко используется для предсказания поведения клиентов, возрастающего объёма продаж, финансовой стабильности компаний, изменений курса валют, определения сроков доставки товаров, а также для выявления неисправностей в работе оборудования. Обычно метод основан на изучении прошлых данных и определении параметров, которые могут повлиять на будущее.
Статья о статистическом анализе
Современные технологии Big Data не только позволяют обрабатывать большие объемы данных, но и существенно улучшают точность статистических данных. Это объясняется тем, что более обширная выборка обеспечивает более точный и корректный анализ результатов.
Визуализация является ключевым этапом в анализе данных, так как она позволяет представить информацию в удобном и понятном формате для пользователя. Этот процесс может включать в себя создание графиков, карт, схем, диаграмм и гистограмм.
Для достижения успешного результата визуализации используются специальные инструменты Big Data, которые позволяют обрабатывать и анализировать большие объемы данных.
Количество информации, сгенерированной пользователями, увеличивается с каждым годом. Примерно за 2020 год они сгенерировали почти 60 зеттабайт (около 60 × 10 21 байт) данных, а к 2025 году прогнозируется утроение этих цифр. Поэтому анализ Big Data является перспективным технологическим направлением, на которое вкладываются большие деньги крупных компаний. Большие данные актуальны и для бизнеса, и для науки, и для сферы государственного управления.
Какие свойства данных можно отнести к понятию Big Data?
Big Data - это громадный объем данных, который является характерным атрибутом технологической эры, что мы наблюдаем сегодня. Однако, объем данных - это не единственная характеристика, которой следует обладать, чтобы быть отнесенным к категории Big Data.
Для того, чтобы данные были считались Big Data, необходимо, чтобы они соответствовали трём главным характеристикам, называемым «трем V»: объёму, скорости и разнообразию. Количество данных должно быть огромным и измеряться не терабайтами, а петабайтами и эксабайтами. Данные также должны поступать из разных источников непрерывно и быстро. Информация, относящаяся к Big Data, может быть представлена разнообразными типами данных, такими как текстовые и графические документы, аудио и видеофайлы, а также логи. Некоторые эксперты добавляют два дополнительных критерия, которыми являются достоверность и ценность.
Также для того, чтобы данные имели значение и могли быть использованы бизнесом, они должны быть точными, практически полезными и иметь жизненную способность. В целом, характеристики Big Data существенно отличаются от привычных нам данных, традиционно обрабатываемых в информационных системах.
Зачем использовать Big Data?
Одним из главных преимуществ использования анализа больших данных является возможность оптимизации бизнес-процессов, улучшения логистики, повышения производительности и качества товаров и услуг. Также большие данные позволяют минимизировать риски, совершенствовать предсказание тенденций рынка, понимать поведение клиентов и их потребности, чтобы правильно нацеливаться на целевую аудиторию. Благодаря анализу большого объема данных, производство становится экологичнее и энергоэффективнее. Не только продавцы получают выгоду от использования Big Data, но и покупатели - удобства в использовании сервисов.
Первыми преимущества использования Big Data оценили телекоммуникационные компании, банки и компании ретейла. Сейчас анализ больших данных широко используется не только в торговле, рекламе и индустрии развлечений, но и в сфере безопасности, медицине, сельском хозяйстве, промышленности, энергетике, науке, государственном управлении.
Ниже представлены несколько примеров использования Big Data в разных отраслях деятельности.
Внедрение инноваций в сфере медицины значительно расширяет возможности науки и технологий, в том числе при помощи анализа Big Data. Некоторые технологические компании уже создали интеллектуальные продукты и сервисы, с помощью которых можно решать принципиально новые задачи в медицине. Например, в Америке была разработана платформа «вычислительной биологии» для установления взаимодействия химических веществ с сигнальными рецепторами клеток организма. При использовании инструментов Big Data возможна революция в фармакологии, поскольку с ее помощью можно находить и создавать лекарственные препараты, которые точно попадают в цель и могут эффективно лечить различные заболевания.
Сегодня анализ больших данных используется для ускорения и повышения точности медицинских исследований. На конференции программистов DUMP уральского региона были представлены данные, демонстрирующие, что использование Big Data в циклических медицинских тестированиях выявляет ошибки с точностью более чем на 20%, по сравнению с неавтоматизированными измерениями.
В Европе технология анализа больших данных внедряется в сферу медицины более широкими возможностями. Здесь проведено исследование, в ходе которого была проанализирована информация на 150 000 пациентов, что позволило выявить связь определенных генетических факторов с риском возникновения рака. Такой анализ выполнен благодаря использованию технологий Big Data.
Изучение поведения клиентов
В настоящее время маркетологи активно используют большие данные для оптимизации эффективности рекламной кампании. Данные анализируются из истории покупок, поиска, посещений и лайков в социальных сетях для определения предпочтений пользователей. Это позволяет предлагать клиентам только самые подходящие предложения, сделав рекламу более адресной и эффективной, благодаря Big Data.
Одним из первооткрывателей в этой области стал известный маркетплейс Amazon. В системе рекомендаций учитывались не только история покупок и анализ поведения клиентов, но и внешние факторы, такие как сезон и предстоящие праздники. В результате система рекомендаций Amazon стала ответственной за более чем треть всех продаж.
Обеспечение безопасности транзакций является одним из важнейших приоритетов для банков. Сегодня они используют большие данные, чтобы улучшить методы выявления мошеннических операций и предотвратить кражу персональных данных клиентов.
Одним из инструментов, используемых банками, является анализ Big Data и машинное обучение для создания моделей поведения честных пользователей. Любое отклонение от этого поведения сигнализирует службе безопасности о возможной угрозе.
"Сбербанк" был одним из первых банков, который начал использовать подобную систему еще в 2014 году. Они внедрили систему сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы данных. Благодаря этой системе была достигнута большая точность идентификации клиентов, а количество случаев мошенничества снизилось в десять раз.
В современном мире внедрение новых технологий является необходимым фактором для совершенствования производственных процессов. Одной из самых актуальных технологий на данный момент является Big Data, которая удается помочь предотвратить простои оборудования и снижение производительности. Интеллектуальные системы на основе этой технологии применяются для сбора и анализа данных с приборов мониторинга, средств измерения, логических контроллеров. Обработанные данные позволяют видеть, насколько работоспособно оборудование, предотвращать поломки, выявлять и исключать из процесса неэффективные операции, экономить материалы и потребляемую энергию, как это указано на сайте https://controleng.ru/.
Аэропорт «Пулково» в 2020 году внедрил интеллектуальную платформу по управлению предприятием, основанную на применении больших данных. Она стала ключевым элементом автоматизации работы семидесяти служб компании и позволила сделать управление аэропортом более прозрачным и эффективным. Особенностью платформы является возможность получения оперативной и полной информации по любому текущему процессу, что повышает качество работы предприятия. Плюсом является то, что внедрение платформы упрощает сотрудничество аэропорта с авиакомпаниями и оптимизирует планирование ресурсов, включая их техобслуживание и ремонт терминалов. Согласно прогнозам из АНО «Радиочастотный спектр», использование такого «умного сервиса» может улучшить техническое состояние оборудования и обеспечить оборачиваемость запасов на 10%, а уровень сервиса по поставкам — на 20%. Информация была размещена на сайте https://rspectr.com/.
Большие данные – это мощный инструмент, который позволяет строить модели, выявлять закономерности и прогнозировать изменения в поведении людей и процессов. Одной из областей, в которых применяется прогнозная аналитика на основе Big Data, является реклама. Она помогает планировать успешные маркетинговые кампании, предугадывая потребительский спрос на товары и услуги и совершенствуя взаимодействие с клиентами.
Прогнозные модели на основе больших данных также нашли применение в различных областях, включая образование. Так, их используют для расчета будущей успеваемости учеников и эффективности программ.
Кроме того, прогнозная аналитика на основе Big Data уже широко применяется в авиации. Например, в компании Airbus рассчитывают, что к 2025 году, благодаря предиктивному обслуживанию, удастся снизить количество отказов самолетов из-за выявленных неисправностей. Компания Lufthansa Technik уже внедрила платформу, которая прогнозирует сроки замены деталей. Операции, проводимые на основе прогнозной аналитики на основе больших данных, помогают совершенствовать различные отрасли, делая их более эффективными и конкурентоспособными.
Консалтинговая компания Accenture провела исследование в 2014 году, в рамках которого руководители тысячи компаний из разных стран мира были опрошены. Больше половины (60%) из опрошенных компаний на тот момент успешно внедрили системы анализа больших данных и были довольны полученными результатами. Участники исследования назвали несколько преимуществ использования Big Data, включая создание новых продуктов и услуг, увеличение и разнообразие источников доходов, повышение уровня удовлетворенности клиентов и улучшение клиентского опыта. Источник - https://www.tadviser.ru/.
Фото: freepik.com