Молекулярная диагностика генетических заболеваний: особенности и методы исследования

Молекулярная диагностика генетических заболеваний: особенности и методы исследования

Когда мы слышим о генетическом анализе крови, на ум сразу приходит сложное и дорогостоящее исследование, требующее привлечения суперсовременных технологий, но это далеко не так. Генетические тесты в настоящее время стали частью обычного арсенала лабораторных диагностических методов. Они могут быть назначены для оценки индивидуальной реакции пациента на лекарственные препараты, в рамках пренатальной диагностики, для выявления передающихся по наследству заболеваний, установления родства и даже в целях профилактики.

В ХХ веке расшифровка генома человека стала настоящим прорывом: мы понимаем, как генетический код влияет на каждого из нас. Несмотря на то, что ученые до сих пор спорят на эту тему, результаты многолетних исследований стали доступными каждому человеку благодаря молекулярно-генетической диагностике.

В данной статье мы расскажем, как узнать свой личный генетический код и зачем это нужно.

Молекулярно-генетическая диагностика – это относительно новый метод обследования организма, который позволяет определить различные вирусы и инфекции, а также точно выявить мутации генов, которые могут вызывать патологии и оценить риски возникновения различных наследственных и других заболеваний. Более того, это лишь часть возможностей, которые предоставляют возможность изучения ДНК.

Главным достоинством молекулярно-генетической диагностики является минимальный уровень медицинского вмешательства, поскольку проведение исследования проводится in vitro. Этот метод успешно применяется для диагностики заболеваний, переносимых эмбрионами, а также у основных и тяжело больных пациентов. Кровь из вены является самым распространенным материалом для исследования, но возможно выделение ДНК/РНК из других жидкостей и тканей: слюны, соскоба слизистой рта, выделений из половых органов, околоплодной жидкости, волос, ногтей и т.д.

Молекулярная диагностика является значительным шагом в направлении персонализированной медицины, которая позволяет учитывать все особенности конкретного пациента при обследовании и терапии.

Методы молекулярной диагностики находят применение в различных областях медицины. Рассмотрим некоторые из задач и сфер, где используется молекулярная диагностика:

  1. Обнаружение патологий. Молекулярная диагностика применяется в случаях, когда обычные методы не позволяют определить наличие инфекционного или вирусного заболевания. Она может обнаружить заболевание на ранней стадии, когда нет внешних симптомов.
  2. Исследование аллергических реакций. Молекулярная диагностика используется для определения аллергии. Она более точна и безопасна для пациента, так как не требует прямого контакта с аллергеном.
  3. Оценка рисков развития наследственных заболеваний. Молекулярная диагностика помогает выявить опасность для взрослых и детей подвергнуться различным патологиям. Некоторые болезни вызваны мутацией гена, а некоторые — генетическими особенностями. Информация о наличии генетической предрасположенности позволяет оценить риски передачи наследственных заболеваний от родителей к ребенку и профилактику болезней с помощью изменения образа жизни.
  4. Перинатальная медицина. Молекулярная диагностика может определить состояние здоровья и генетические предрасположенности эмбрионов. Анализ ДНК еще не родившегося ребенка позволяет распознать синдромы Дауна, Эдвардса, Патау, Тернера, Клайнфельтера. Также молекулярная диагностика применяется в области вспомогательных репродуктивных технологий.
  5. Фармакогенетика. Молекулярная диагностика позволяет определить эффективность препаратов при лечении тяжелых заболеваний, например, онкологических.
  6. Спортивная медицина. Молекулярная диагностика может помочь выявить спортивные перспективы ребенка и определить, какой вид занятий максимально пользуется здоровью.

Медики с большим интересом относятся к возможностям молекулярной диагностики. Применение персонализированной терапии, учитывающей генетические особенности каждого пациента, позволит избежать побочных эффектов лекарств и снизить затраты на лечение. В США проблема побочных воздействий лекарств входит в пятерку самых распространенных причин госпитализации и смерти.

Генетические исследования становятся актуальными в тех случаях, когда пациенту необходимо узнать информацию о своем здоровье. Это может понадобиться в следующих ситуациях:

  • Для точной диагностики. Например, неправильно определенный аллерген или несвоевременно диагностированное вирусное заболевание может привести к неэффективному лечению.
  • Для профилактики возможных заболеваний. Если есть повышенный риск заболевания раком или сердечно-сосудистыми заболеваниями, то пациент может принимать соответствующие меры, например, отказаться от вредных привычек.
  • Для повышения эффективности лечения. Онкозаболевания имеют множество вариантов лечения, и выбор правильной тактики способствует более эффективному лечению.

Одной из отдельных групп генетических исследований являются исследования ДНК, которые проводятся в связи с планированием или рождением ребенка. В этом случае родители обращаются в лабораторию, чтобы:

  1. Изучить свою генетическую совместимость и оценить риски наследственных заболеваний будущего потомства.
  2. Исследовать состояние плода, чтобы выявить синдромы и опасные патологии.
  3. Диагностировать заболевания и аллергические реакции у младенца.
  4. Определить, какие спортивные занятия, что есть и какой образ жизни будут наиболее полезны для ребенка.
  5. Установить отцовство или материнство.

Этапы молекулярно-генетического исследования

При выборе метода молекулярно-генетического исследования необходимо выполнить следующие этапы:

  1. Взять биоматериал. Кровь пациента чаще всего используется для исследования. Полученный материал маркируется и отправляется в лабораторию.
  2. Выделить ДНК/РНК.
  3. Провести исследования в соответствии с выбранным методом.
  4. Изучить и интерпретировать результаты.
  5. Выдать заключение.

Современные методы молекулярно-генетической диагностики позволяют более точно определять наличие генетических заболеваний у человека. Эти методы используются для обнаружения наследственных мутаций или изменений в генах, которые могут привести к различным болезням.

Одним из основных методов является полимеразная цепная реакция (ПЦР), которая позволяет увеличить количество ДНК в образце до уровня, достаточного для детектирования наследственных мутаций.

Еще один метод - секвенирование ДНК, позволяющее выявить конкретные изменения в генах, связанных с разными наследственными патологиями. Современные методы секвенирования имеют высокую точность и позволяют обнаружить мутации в отдельных генах или даже во всей последовательности генома.

Также используются методы флуоресцентной гибридизации (ФГ), которые основываются на значительном различии между нормальной и измененной ДНК. Этот метод является очень чувствительным и может использоваться, чтобы обнаруживать очень редкие изменения в геноме.

Существуют также более новые методы молекулярно-генетической диагностики, такие как метод генной патологии и генной терапии, которые могут решить ряд наследственных заболеваний на генетическом уровне.

Молекулярная цитогенетика является эффективным методом выявления наследственных заболеваний, врожденных пороков развития и психических отклонений. Суть метода заключается в исследовании хромосом при помощи специальных микроматриц, которые наносят на ДНК-чипы. Один из основных этапов анализа - извлечение лимфоцитов из образца крови, которые затем помещают в питательную среду на 48-72 часа. После прохождения указанного времени производится их изучение. Этот метод назначается в основном для изучения причин бесплодия и невынашивания беременности. А также для установления диагноза у детей при подозрении на врожденные заболевания. Молекулярная цитогенетика очень точна, однако, поскольку результат можно получить только через 20-30 дней после проведения анализа, ее можно назвать трудоемкой и длительной процедурой.

Метод имеет как свои преимущества, так и недостатки. Одно из основных достоинств состоит в его специфичности, поскольку при помощи молекулярной цитогенетики можно выявить лишь небольшое количество патологий, включая аутизм. Однако, при этом метод достаточно точен и во многих случаях не допускает ошибок.

Метод полимеразной цепной реакции (ПЦР) был изобретен в 1983 году и по-прежнему является наиболее распространенным и фундаментальным способом в молекулярной диагностике. Он отличается высочайшей точностью, чувствительностью и скоростью проведения исследования. ДНК/РНК молекулярной диагностики методом ПЦР позволяет выявлять множество патологий, таких как ВИЧ, вирусные гепатиты, половые инфекции, туберкулез, боррелиоз, энцефалит и прочие.

Для проведения анализа выбирают участок ДНК и многократно увеличивают его количество в лаборатории с помощью специальных веществ. Большой перечень биоматериалов подходит для диагностики: кровь, слюна, моча, выделения из половых органов, плевральная и спинномозговая жидкость, ткани плаценты и т.д.

FISH: метод выявления атипичных генов

Метод флуоресцентной гибридизации (FISH) – это молекулярный метод исследования уникальных нуклеотидных соединений отдельной хромосомы или ее участка. Для этого используются короткие меченые флуоресцентными маркерами ДНК-последовательности, так называемые зонды, которые выявляют фрагменты с атипичными генами. Биологический материал для исследования может быть любым – кровь, костный мозг, плацента, ткани эмбриона, биопсия и т.д. Однако, важно, чтобы образец доставили в лабораторию немедленно после его получения.

FISH-метод широко используется в онкологии, например, для отслеживания остаточных злокачественных клеток после курса химиотерапии, в пренатальной диагностике для оценки риска развития у плода врожденных пороков, а также в гематологии. Этот метод выявления атипичных генов является очень чувствительным и точным, его погрешность составляет около 0,5%, а результат можно получить уже через 72 часа. Однако, у FISH есть и недостатки: он более специфичен, чем микроматричный цитогенетический анализ, и может использоваться только для подтверждения или опровержения предполагаемого диагноза.

Микрочипирование – инновационный метод диагностики, часто используемый в медицине. Он основан на использовании меченных флуоресцентом последовательностей ДНК и позволяет получать точные результаты анализов на основе биоматериала.

Для проведения анализа требуется получить образец ДНК/РНК из любого биоматериала. С помощью микрочипа ДНК-микрочип, представляющего собой основание из стекла, пластика или геля, на который нанесены микротесты длиной от 25 до 1000 нуклеотидов, можно проводить до нескольких тысяч тестов.

Этот метод диагностики точен и чувствителен, а также дает возможность изучать генетическую предрасположенность к определенным заболеваниям. Он применяется в онкологии и кардиологии. Важно отметить, что результаты исследования становятся доступными уже через несколько дней после забора материала.

Молекулярная диагностика может использоваться в разных областях медицины и является неинвазивным способом обследования организма. Но, к сожалению, в России использование этого метода диагностики в клиниках ограничено.

Важно отметить, что любая информация о здоровье и медицине, представленная в данной статье, служит исключительно ознакомительной цели и не должна использоваться для самодиагностики или самолечения.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *